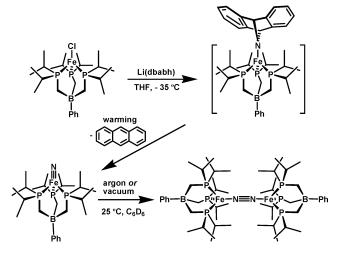


Published on Web 04/30/2004

A Tetrahedrally Coordinated L_3Fe-N_x Platform that Accommodates Terminal Nitride ($Fe^{IV} \equiv N$) and Dinitrogen ($Fe^{I}-N_2-Fe^{I}$) Ligands

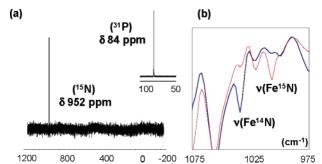
Theodore A. Betley and Jonas C. Peters*

Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125

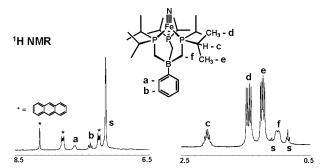

Received March 5, 2004; E-mail: jpeters@caltech.edu

High-oxidation state iron complexes featuring metal-to-ligand multiple bonds (e.g., Fe=E/Fe=E) are proposed as key intermediates in numerous biocatalytic transformations.¹ Because such intermediates are typically too reactive to be directly observed,^{2a} much effort has focused on developing low-molecular weight model complexes that enable the more systematic study of their physical characteristics and reactivity patterns.^{1,2b} The vast majority of work in this field has been devoted to reactive ferryls (Fe^{IV}=O) as these species are postulated as critical intermediates in a variety of enzymes that reduce dioxygen.³ The reduction of dinitrogen constitutes an equally fascinating biocatalytic transformation.⁴ A highly redox-active molybdenum center (Mo^{III} to Mo^{VI}) has been suggested as the site of N2 binding and reduction in the well-studied FeMo cofactor.⁵ Schrock's demonstration of catalytic ammonia production using a well-defined tris(amido)amine molybdenum complex elegantly establishes that such a scenario is chemically feasible.⁶ One of the various alternative possibilities to consider is that a single low-valent iron site^{5a,7} initiates the required redox transformations to convert N2 to NH3 by successive H⁺/e⁻ transfer steps (e.g., $Fe^{I}-N_{2} + 3 H^{+} + 3 e^{-} \rightarrow Fe^{IV} \equiv N + NH_{3}$; $Fe^{IV} \equiv N +$ $3 \text{ H}^+ + 3 \text{ e}^- \rightarrow \text{Fe}^{I} - \text{NH}_3$).

An intriguing intermediate to consider under the latter scenario is the iron nitride (Fe=N). At present, the only spectroscopic evidence for terminally bound nitrides of iron comes from frozen matrix experiments.8 Nakamato and co-workers reported the resonance Raman detection of an octaethylporphyrinato nitride (OEP)Fe^V(N) formed via photochemically induced N_2 expulsion from a coordinated azide ligand.^{8a} Wieghardt and co-workers used a similar photochemical strategy to generate a high-valent iron species assigned as an Fe^V(N) nitride based upon low-temperature EPR and Mössbauer data.^{8b} The conditions under which these Fe^V(N) species were produced, in addition to their high degree of thermal instability, vitiated their more thorough spectroscopic and chemical interrogation. Herein we report the room-temperature observation of what is, to our knowledge, the first terminal iron-(IV) nitride, $[PhBP^{iPr}_3]Fe^{IV} \equiv N ([PhBP^{iPr}_3] = [PhB(CH_2P^iPr_2)_3]^{-}).$ The pseudotetrahedral L_3Fe-N_x platform described shuttles between the formal oxidation states Fe^{IV} and Fe^{I} as the terminal N_x ligand is transformed from the nitride functionality (Fe^{IV}=N) to dinitrogen (Fe^I-N₂-Fe^I). In addition, the Fe^{IV}≡N subunit can serve as a source of NH₃ in the presence of proton and electron equivalents.


To explore the viability of a pseudotetrahedral iron nitride $L_3Fe^{IV} \equiv N$, we sought an anionic X-type ligand that would undergo clean oxidative N-atom transfer once coordinated to the "[PhBP^{iPr}₃]Fe" template. Choice of the "[PhBP^{iPr}₃]Fe" subunit as a suitable N-atom acceptor stemmed from prior work by our lab concerning the preparation of pseudotetrahedral, *low-spin S* = $^{1}/_{2}Fe(III)$ imides of the type [PhB(CH₂PPh₂)₃]Fe \equiv NR and [PhBP^{iPr}₃]Fe \equiv NR.^{7c,10} The lithium amide reagent Li(dbabh) (dbabh = 2,3: 5,6-dibenzo-7-aza bicyclo[2.2.1]hepta-2,5-diene),¹¹ which has been

Scheme 1



previously used by Cummins as an N-atom transfer agent,^{11b} provided clean access to the desired reaction manifold (Scheme 1). Addition of Li(dbabh) to yellow [PhBP^{*i*Pr}₃]FeCl in THF (or THF-*d*₈) at ca. –100 °C formed a slurry which, upon warming to –35 °C, generated a red species that is formulated as the high-spin amide complex [PhBP^{*i*Pr}₃]Fe(dbabh). For comparison, a structurally related and thermally stable red iron amide complex, [PhBP^{*i*Pr}₃]Fe(NPh₂), has been isolated and structurally characterized (see Supporting Information for details). The reaction between Li(dbabh) and [PhBP^{*i*Pr}₃]FeCl to generate [PhBP^{*i*Pr}₃]Fe(dbabh) can be monitored in situ by NMR spectroscopy in THF-*d*₈ and proceeds cleanly. A broad optical band associated with [PhBP^{*i*Pr}₃]Fe(dbabh) is observed at 475 nm ($\epsilon = 2300 \text{ M}^{-1} \text{ cm}^{-1}$), well-separated from yellow [PhBP^{*i*Pr}₃]FeCl (420 nm) and Li(dbabh) (370 nm).

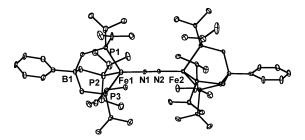
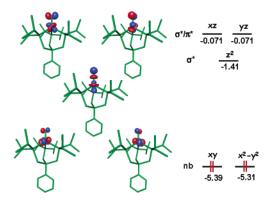

[PhBP^{iPr}₃]Fe(dbabh) is thermally unstable and exhibits clean firstorder decay when warmed to room temperature in solution ($t_{1/2} \approx$ 11 min at 22 °C)12 to produce a stoichiometric equivalent of anthracene (NMR integration) and a new diamagnetic iron species assigned as the tan nitride complex [PhBP^{iPr}₃]Fe≡N on the basis of its NMR data. The ³¹P NMR spectrum of the reaction solution (in THF- d_8) shows a single sharp resonance at 84 ppm (Figure 1a inset) that is close in chemical shift to the structurally related complex [PhBP^{*i*Pr}₃]Co \equiv N-*p*-tolyl (85 ppm).^{7c} The ¹H NMR resonances for the chelated [PhBP^{iPr}₃] ligand are also indicative of chemically equivalent phosphine donors (Figure 2), even at low temperature (-80 °C). While these NMR data are consistent with a three-fold symmetric, pseudotetrahedral structure type, a ¹⁵Nlabeling experiment was critical to more firmly establish the Fe=N functionality. Terminally bound nitrides give rise to signature resonances by ¹⁵N NMR spectroscopy.¹³ The diamagnetic nature of the d⁴ [PhBP^{*i*Pr}₃]Fe≡N complex therefore renders it particularly well-suited to direct NMR detection of the terminal nitride ligand

Figure 1. (a) ¹⁵N NMR and ³¹P NMR (inset) for $[PhBP^{iPr_3}]Fe\equiv^{15}N$. (b) IR (pentane/KBr): (blue line) $[PhBP^{iPr_3}]Fe\equiv^{14}N$, (red line) $[PhBP^{iPr_3}]-Fe\equiv^{15}N$.

Figure 2. ¹H NMR of $[PhBP^{iPr}_{3}]Fe \equiv {}^{15}N$. S = residual solvent.

Figure 3. Molecular representation of the solid-state structure of {[Ph-BPi^{Pr}₃]Fe}₂(μ^2 -N₂). Fe1-N1 = 1.811(5) Å; Fe2-N2 = 1.818(5) Å; N1-N2 = 1.138(6) Å. See Supporting Information for details.


of interest. A ¹⁵N-labeled sample of Li(dbabh) was prepared from commercially available ¹⁵N-labeled (ca. 98% ¹⁵N) potassium phthalimide (see Supporting Information). Addition of ¹⁵N–Li-(dbabh) to [PhBP^{*i*Pr}₃]FeCl at low temperature in THF and subsequent warming of the sample to 22 °C for 25 min produced the expected [PhBP^{*i*Pr}₃]Fe≡¹⁵N nitride product (³¹P NMR). The sample was then cooled to -5 °C, and a high-quality ¹⁵N NMR spectrum was obtained over a period of 8 h. The ¹⁵N NMR spectrum is shown in Figure 1a and exhibits a single sharp resonance at 952 ppm (referenced to nitromethane at 380 ppm), cementing our assignment of the complex as cylindrically symmetric with a terminally bound Fe≡N linkage.¹⁴

Akin to several high-valent osmium and ruthenium nitrides,¹⁵ [PhBP^{iPr}₃]Fe \equiv N exhibits a propensity to undergo bimolecular condensation via nitride coupling. This process generates the previously reported N₂-bridged complex {[PhBP^{iPr}₃]Fe}₂(μ -N₂).^{7c} The coupling reaction takes place under an argon atmosphere or upon concentration under vacuum (Scheme 1). The solid-state molecular structure of {[PhBP^{iPr}₃]Fe}₂(μ -N₂) has been obtained by XRD analysis, and its X-ray structural representation is shown in Figure 3. The Fe \equiv N coupling reaction is striking in that it constitutes what is, to our knowledge, the only example of a 6-electron redox process mediated by two iron centers. Each iron center formally shuttles from Fe^{IV} to Fe^I as the N_x ligand is

transformed from a π -basic nitride to π -acidic N₂. While the converse of this pathway (i.e., Fe^I–N \equiv N–Fe^I \rightarrow 2 Fe^{IV} \equiv N) is therefore kinetically competent by microscopic reversibility, it may not be thermally accessible in the present system. Heating a THF solution of {[PhBP^{*i*Pr}₃]Fe}₂(μ -N₂) at 60 °C brought about its gradual degradation; however, no [PhBP^{*i*Pr}₃]Fe \equiv N was detected, and the various reaction products produced were ill-defined. Evidence for a viable Fe^I-to-Fe^{IV} redox couple was demonstrated by the addition of a high-valent Mn \equiv N source,¹⁶ (*trans*-[1,2-cyclohexanediamino-*N*,*N'*-bis(4-diethylaminosalicylidene])Mn^V \equiv N, to the N₂-bridged complex {[PhBP^{*i*Pr}₃]Fe}₂(μ -N₂). Mixing a stoichiometric equivalent of these two complexes in THF solution generated [PhBP^{*i*Pr}₃]Fe^{IV} \equiv N in minutes (~40% based on Fe). The reaction did not proceed to completion, and the reaction mixture likely contained equilibrating species.¹⁷

While the $Fe^{IV} \equiv N$ coupling reaction to produce $Fe^{I} - N \equiv N -$ Fe^I under argon further substantiates our assignment of the terminal nitride functionality, it has also frustrated our efforts to isolate [PhBP^{*i*Pr}₃]Fe≡N in crystalline form. To obtain satisfactory vibrational characterization of the Fe≡N functional unit it was necessary to reconstitute the nitride complex in a straight-chain hydrocarbon. To do this while circumventing its concentration-dependent degradation to {[PhBP^{iPr}₃]Fe}₂(μ -N₂), a ~0.02 M solution of [PhBP^{iPr}₃]-Fe(dbabh) was generated at -35 °C in THF and then dried by removal of the reaction volatiles without warming the solution. The remaining residue was reconstituted in cold pentane and subsequently warmed to 22 °C to generate a solution containing [PhBP^{iPr}₃]-Fe≡N and the anthracene byproduct (see Supporting Information). Examination of the respective IR spectra of pentane solutions of [PhBP^{iPr}₃]Fe≡N and [PhBP^{iPr}₃]Fe≡¹⁵N prepared in this fashion reveals an ν (Fe=N) vibration at 1034 cm⁻¹ and an ν (Fe \equiv ¹⁵N) vibration at 1007 cm⁻¹ (Figure 1b). The isotopically labeled derivative thus shifts to lower frequency by 27 cm^{-1} , the amount predicted from the reduced mass calculation for a simple harmonic oscillator model (28 cm⁻¹). The energy of the Fe \equiv N vibration is reflective of the Fe=N triple bond (vide infra) and is to be compared with related data for other bona fide M≡N triple bonds. For example, the Mn≡N vibration in (TPP)Mn≡N is 1036 cm⁻¹ (¹⁵N: 1008) and the Mo≡N vibration in Schrock's $[IPTN_3N]Mo \equiv N$ is 1013 cm⁻¹ (¹⁵N: 986).^{13b,18,19} Nakamoto reported a much lower vibration (876 cm⁻¹) for an (TPP)Fe^V(N) species detected in a frozen glass.^{8a} The lower frequency for (TPP)-Fe^V(N) likely results from attenuation of the Fe-N bond order (Fe=N) due to occupation of the Fe-N π^* orbitals by two electrons.

Both five- and even six-coordinate iron complexes can be prepared using the [PhBP^{iPr}₃] ligand scaffold,⁹ and we therefore suggest that there is an electronic stabilization of the Fe=N linkage under three-fold symmetry that arises from the possibility to achieve one σ - and two π -bonding interactions. That this should be the case can be easily predicted from simple symmetry considerations and is also supported by DFT calculations. A DFT-minimized geometry for [PhBP^{iPr}₃]Fe=N has been determined using the atomic coordinates reported previously for the $S = \frac{1}{2}$ imide complex [PhBP^{iPr}₃]Fe=NAd as an initial HF guess.^{7c} The calculation provides the geometric and electronic structure information provided in Figure 4. The Fe-N bond distance is calculated at 1.49 Å, appreciably shorter than the distance for its crystallographically characterized relative [PhBP^{iPr}₃]Fe≡NAd (1.64 Å).^{7c} The P-Fe-P angles are appreciably expanded (99-101°) in the calculated nitride structure by comparison to their more typical angles in a host of other [PhBP^{*i*Pr}₃]Fe complexes (90–95°),^{7c,9} lending it a conformation that is somewhat more tetrahedral in nature. This fact, in

Figure 4. Theoretically predicted geometry and electronic structure (DFT, JAGUAR 5.0, B3LYP/LACVP**) for S = 0 [PhBP^{iPr}₃]Fe=N. Lobal representations correspond to the frontier orbitals (energies in eV). Structural parameters: Fe-P = 2.28, 2.28, 2.29 Å; N-P-Fe = 117, 117, 119°; P-Fe-P = 99, 101, 101°; Fe-N = 1.490 Å.

addition to the distinct N-atom hybridization in the nitride complex by comparison to related imide structures,²¹ dramatically destabilizes the iron-centered a₁ orbital of d_z² parentage. This situation gives rise to a large HOMO–LUMO gap for [PhBP^{*i*Pr₃}]Fe≡N and a favorable ground-state $(xy)^2(x^2 - y^2)^2(z^2)^0(xz)^0(yz)^0$ electronic configuration consistent with a d⁴, S = 0 Fe^{IV}≡N subunit. The diamagnetic d⁴ complex (mesityl)₃Ir^V≡O presumably owes its stability to similar electronic arguments.²²

While we have yet to thoroughly survey the reactivity of [PhBP^{*i*Pr}₃]Fe=N, we note the following preliminary observations. The addition of PPh₃ or PEt₃ to THF solutions of [PhBP^{iPr}₃]Fe≡N appears to cleanly (¹H NMR) generate the corresponding S = 2Fe(II) phosphiniminatos $[PhBP^{iPr}_3]Fe-N=PR_3$ (R = PPh₃ or PEt₃). The presence of the phosphiniminato functionality is in each case confirmed by the presence of intense IR vibrations (KBr/ C_6H_6 , ν - $(Ph_3P=N) = 1223 \text{ cm}^{-1}, \nu(Et_3P=N) = 1214 \text{ cm}^{-1}).$ Also, the corresponding R₃P=NH₂⁺ protonolysis products are liberated and detected by subjecting the reaction solutions to positive mode ES-MS (electrospray: $Ph_3PNH_2^+ = m/z$ 278, $Et_3PNH_2^+ = m/z$ 120). Perhaps most interesting to note is that the nitride ligand serves as a source of NH₃ upon the addition of proton and electron equivalents. For example, the addition of solid [LutH][BPh4] and CoCp₂ (3 equiv of each) to a room-temperature C₆D₆ solution of [PhBP^{iPr}₃]Fe≡N produced after 2 h an appreciable quantity of NH₃, easily identified by ¹H NMR in d_6 -DMSO as its NH₄Cl salt after vacuum transfer of the reaction volatiles into an ethereal solution of HCl (ca. 1 M).13b Two independent runs using these nonoptimized conditions afforded 41 and 45% of NH3 based upon NMR integration versus an internal standard. In a potentially related reaction, the release of p-toluidine by hydrogenation of the iron-(III) imide [PhB(CH₂PPh₂)₃]Fe≡N-p-tolyl was observed.²³

To conclude, the "[PhBP^{iPr}₃]Fe-N_x" chemistry discussed herein and that which we have reported previously^{7c} collectively illustrate that the redox chemistry available to a pseudotetrahedral iron site can be remarkably rich. Examples of "[PhBP^{iPr}₃]Fe-N_x" complexes have now been characterized that feature five formal iron oxidation states based upon the magnetic data available:²⁴ [PhBP^{iPr}₃]Fe⁰N₂⁻ (*S* = 1), [PhBP^{iPr}₃]Fe^I-N₂-Fe^I[PhBP^{iPr}₃] (*S* = ³/₂ per iron center), [PhBP^{iPr}₃]Fe^{II}-N₂Me (*S* = 2), [PhBP^{iPr}₃]Fe^{III}=NAd (*S* = ¹/₂), and [PhBP^{iPr}₃]Fe^{IV}=N (*S* = 0). For each of these complexes, the dominant structural modification pertains to the nature of the fourth N_x ligand: π -acidic N₂ favors the lower oxidation states, whereas π -basic nitride (or imide) favors the higher oxidation states.

Acknowledgment. This work was supported by the NSF (CHE-01232216), the Sloan Foundation, and the Dreyfus foundation. T.A.B. is grateful for a graduate research fellowship from the Department of Defense. Professor Seth N. Brown provided several stimulating discussions on the topic of d_{γ^2} .

Supporting Information Available: Synthetic protocols and characterization data; crystallographic data including a CIF file; spectroscopic data; details for DFT study. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Groves, J. T.; Han, Y.-Z. Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; pp 3–48. (b) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Chem. Rev. 2004, 104, 939.
- (2) (a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. *Science* 2000, 287, 1615. (b) MacBeth, C. E.; Golombek, A. P.; Young, V. G., Jr.; Yang, C.; Kuczera, K.; Hendrich, M. P.; Borovik, A. S. *Science* 2000, 289, 938.
- (3) Rohde, J. U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski, M. R.; Stubna, A.; Münck, E.; Nam, W.; Que, L., Jr. *Science* 2003, 299, 1037.
- (4) (a) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. *Science* 2002, 297, 1696. (b) Howard, J. B.; Rees, D. C. *Chem. Rev.* 1996, 96, 2965. (c) Burgess, B. K.; Lowe, D. J. *Chem. Rev.* 1996, 96, 2983.
- (5) (a) Seefeldt, L. C.; Dance, I. G.; Dean, D. R. *Biochemistry* 2004, 43, 1401. (b) Chatt, J.; Dilworth, J. R.; Richards, R. L. *Chem. Rev.* 1978, 78, 589. (c) Hughes, D. L.; Ibrahim, S. K.; Pickett, C. J.; Querne, G.; Laouenan, A.; Talarmin, J.; Queiros, A.; Fonseca, A. *Polyhedron* 1994, 13, 3341. (d) Leigh, G. J. *Science* 2003, 301, 55.
- (6) Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.
- (7) (a) Hills, A.; Hughes, D. L.; Jiminez-Tenorio, M.; Leigh, G. J.; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 3041. (b) George, T. A.; Rose, D. J.; Chang, Y. D.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295. (c) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 10782.
- (8) (a) Wagner, W. D.; Nakamoto, K. J. Am. Chem. Soc. 1988, 110, 4044.
 (b) Meyer, K.; Bill, E.; Mienert, B.; Weyhermuller, T.; Wieghardt, K. J. Am. Chem. Soc. 1999, 121, 4859.
- (9) Betley, T. A.; Peters, J. C. Inorg. Chem. 2003, 42, 5074.
- (10) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 322.
- (11) (a) Carpino, L. A.; Padykula, R. E.; Barr, D. E.; Hall, F. H.; Krause, J. G.; Dufresne, R. F.; Thoman, C. J. J. Org. Chem. 1988, 53, 2565. (b) Mindiola, D. J.; Cummins, C. C. Angew. Chem., Int. Ed. 1998, 37, 945.
- (12) The first-order decay of [PhBP^{iPt}₃]Fe(dbabh) was established by monitoring the decay of its optical absorption at 475 nm (k = 0.067 M⁻¹ s⁻¹, 22 °C, 1.2 mM solution; See Supporting Information for details).
- (13) (a) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861. (b) Yandulov,
 D. V.; Schrock, R. R. J. Am. Chem. Soc. 2002, 124, 6252.
- (14) ²J_{PN} coupling is not observed in either the ¹⁵N NMR spectrum or the ³¹P NMR spectrum for [PhBP^{ibr}₃]Fe≡¹⁵N. A number of phosphine-supported imides and nitrides that feature other metals (e.g., Mo, W) have been prepared for which ¹⁵N and ³¹P NMR data is available. ²J_{PN} coupling is not observed in these systems. See: (a) Rocklage, S. M.; Schrock, R. R. J. Am. Chem. Soc. **1982**, *104*, 3077. (b) Donvan-Mtunzi, S.; Richards, R. L.; Mason, J. J. Chem. Soc., Dalton Trans. **1984**, 1329.
- (15) (a) Buhr, J. D.; Taube, H. Inorg. Chem. 1979, 18, 2208. (b) Man, W.-L.; Tang, T.-M.; Wong, T.-W.; Lau, T.-C.; Peng, S.-M.; Wong, W.-T. J. Am. Chem. Soc. 2004, 126, 478. (c) Seymore, S. B.; Brown, S. N. Inorg. Chem. 2002, 41, 462.
- (16) (a) (trans-[1,2-Cyclohexanediamino-N,N'-bis(4-diethylaminosalicylidene])-Mn^V≡N was synthesized from trans-[1,2-cyclohexanediamino-N,N'-bis-(4-diethylaminosalicylidene] according to: Du Bois, J.; Hong, J.; Carreira, E. M.; Day, M. W. J. Am. Chem. Soc. **1996**, 118, 915. (b) Bendix, J. J. Am. Chem. Soc. **2003**, 125, 13348. (c) Chang, C. J.; Low, D. W.; Gray, H. B. Inorg. Chem. **1997**, 36, 270.
- (17) For instance, we suspect the reaction solution also contains a bridged nitride species (i.e., Fe=N=Mn). Studies are underway to resolve the complete product profile.
- (18) [TPP] = tetraphenylporphyrinato; [HIPTN₃N] = tris(2-(2,4,6,2",4",6"-hexaisopropyl-1,1':3',1" terphenyl-5'-amino)ethyl)amine.
- (19) Hill, C. L.; Hollander, F. J. J. Am. Chem. Soc. 1982, 104, 7318.
- (20) See Supporting Information for details. Jaguar, version 5.0, Schrodinger: Portland, OR, 2002.
- (21) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002, 124, 11238.
- (22) Hay-Motherwell, R. S.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. Polyhedron 1993, 12, 2009.
- (23) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 4538.
- (24) While their ground spin-state assignments (EPR, SQUID) are consistent with these formal oxidation states, studies are underway to further probe this family of [PhBP^{iPr}₃]Fe-N_x species by Mössbauer spectroscopy. JA048713V